
Linux/Unix System
Programming

CSCI 2153

David L. Sylvester, Sr., Professor

What is an Operating System?
• Software that manages the computer hardware. The

hardware must provide appropriate mechanisms to ensure
the correct operation of the computer system and to prevent
user programs from interfering with the proper operation of
the system.

• A program that controls the execution of application
programs and acts as an interface between the user of a
computer and the computer hardware.

• The one program running at all times on the computer
(usually called the kernel), with all else being application
programs.

Functions of an Operating System?
• Convenience: An OS makes a computer more convenient to

use.

• Efficiency: An OS allows the computer system resources to
be used in an efficient manner.

• Ability to Evolve: An OS should be constructed in such a
way as to permit the effective development, testing and
introduction of new system functions at the same time
without interfering with service.

Computer System Conceptual View

Computer System Conceptual View
• Every general-purpose computer consists of:

1. Hardware, which consists of memory, CPU, ALU, and
I/O devices, peripheral device, and storage device.

2. System Programs, which consists of compilers, loaders,
editors, OS, etc.

3. Application Programs, which consists of business
programs, database programs.

Then we have the User(s) who interacts with the computer.

I/O System Management
•The module that keeps track of the status of devices is
called the I/O traffic controller. Each I/O device has a
device handler that resides in a separate process
associated with that device.

The I/O subsystem consists of
• A memory Management component that includes buffering

caching and spooling.
• A general device driver interface.

Drivers for specific hardware devices.

Assignment (Spooling vs Buffering)
•Write a one-page document elaborating on the
differences between spooling and buffering. Also
include a cover page that includes: (your name,
course title, course number, course day/time,
instructor’s name and due date) and a work cited
page. Assignment is to be uploaded to CANVAS.

Assignment
(Device Drivers and Their Purpose)

•Write a one-page document pertaining to device
drivers and their purpose within a operating system.
Also include a cover page that includes: (your name,
course title, course number, course day/time,
instructor’s name and due date) and a work cited
page. Assignment is to be uploaded to CANVAS.

I/O System Management
•Assembler - program that takes basic computer instructions and

converts them into a pattern of bits that the computer's processor can use to
perform its basic operations.

•Compiler - program that processes statements written in a particular
programming language and turns them into machine language or "code" that
a computer's processor uses.

•Loader - the part of an operating system that is responsible for loading
programs and libraries.

Evolution of Operating Systems

Generation Year Electronic Device Used Types of OS Device

First 1945-55 Vaccum Tubes Plug Boards

Second 1955-65 Transistors Batch Systems

Third 1965-80 Integrated Circuits(CI) Multiprogramming

Fourth 1980-82 Large Scale Integration PC

Fifth 1982- Parallel Processing and AI Smartphones, Tablets

Types of Operating Systems
• Batch Operating Systems - Sequence of jobs in a program on a

computer without manual interventions.

• Time-Sharing operating Systems - allows many users to share the
computer resources.

• Distributed operating System- Manages a group of different
computers and make appear to be a single computer.

• Distributed operating System- Manages a group of different
computers and make appear to be a single computer.

• Network operating system- computers running in different operating
system can participate in common network .

• Real time operating system – meant applications to fix the deadlines.

What is UNIX?
• UNIX is an operating system developed in the Bell

Laboratories of AT&T and is an example a multi-
tasking, multi-user operating system. It provides its
users with: program development tools; electronic
communications facilities, such as an electronic mail;
text editors and text formatters. There are also many
development tools available as standard within the
UNIX operating system that other operating systems
require as add-ons.

The Process Table
Managing processes is one of the kernel's biggest responsibilities. It decides
which process actually gets to run on the CPU (or CPUs) at any point in time.
The kernel keeps a data structure (in kernel space) to track information about
processes: the process table. Each process has an entry in this table (entries
are called process control blocks that include all sorts of information. The
processes ID (pid) is one piece of info. You can actually look at all this process
table information by examining files (at least they look like files) in the /proc
directory.

$ ps (list running processes)
$ ls /proc (list processes)
$ pidof process-name (finds the PID number)
$ ls /proc/1 (lists system processes with PID 1)

Stopping Processes
Ending a process can be done in several different ways. Often, from a console-
based command, sending a CTRL + C keystroke (the default interrupt
character) will exit the command. This works when the process is running in
the foreground mode.
If a process is running in the background, you should get its Job ID using
the ps command. After that, you can use the kill command to kill the process
as follows −

$ps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one

The kill command terminates the first_one process. If a process ignores a regular kill
command, you can use kill -9 followed by the process ID as follows:

$ kill -9 6738

Parent and Child Processes
Each unix process has two ID numbers assigned to it: The Process ID (pid) and
the Parent process ID (ppid). Each user process in the system has a parent
process.
Most of the commands that you run have the shell as their parent. Check
the ps -f example where this command listed both the process ID and the
parent process ID.

Zombie and Orphan Processes
Normally, when a child process is killed, the parent process is updated via
a SIGCHLD signal. Then the parent can do some other task or restart a new
child as needed. However, sometimes the parent process is killed before its
child is killed. In this case, the "parent of all processes," the init process,
becomes the new PPID (parent process ID). In some cases, these processes
are called orphan processes.

When a process is killed, a ps listing may still show the process with a Z state.
This is a zombie or defunct process. The process is dead and not being used.
These processes are different from the orphan processes. They have
completed execution but still find an entry in the process table.

Deamon Processes
Daemons are system-related background processes that often run with the
permissions of root and services requests from other processes.
A daemon has no controlling terminal. It cannot open /dev/tty. If you do
a "ps -ef" and look at the tty field, all daemons will have a ? for the tty.
To be precise, a daemon is a process that runs in the background, usually
waiting for something to happen that it is capable of working with. For
example, a printer daemon waiting for print commands.
If you have a program that calls for lengthy processing, then it’s worth to
make it a daemon and run it in the background.

The top Command
The top command is a very useful tool for quickly showing processes

sorted by various criteria.

It is an interactive diagnostic tool that updates frequently and shows

information about physical and virtual memory, CPU usage, load

averages, and your busy processes.

Here is the simple syntax to run top command and to see the statistics

of CPU utilization by different processes:

$top

Network Communication Utilities
The ping command sends an echo request to a host available on the network.
Using this command, you can check if your remote host is responding well or
not.
The ping command is useful for the following −

• Tracking and isolating hardware and software problems.
• Determining the status of the network and various foreign hosts.
• Testing, measuring, and managing networks.

$ ping hostname or ip-address

Network Communication Utilities
The ftp Utility

ftp stands for File Transfer Protocol. This utility helps you upload and
download your file from one computer to another computer.

The ftp utility has its own set of Unix-like commands. These commands

help you perform tasks such as:

• Connect and login to a remote host.

• Navigate directories.

• List directory contents.

• Put and get files.

• Transfer files as ascii, ebcdic or binary.

Syntax to use the ftp command:
$ftp hostname or ip-address

Network Communication Utilities
The telnet Utility

There are times when we are required to connect to a remote Unix

machine and work on that machine remotely. Telnet is a utility that

allows a computer user at one site to make a connection, login and

then conduct work on a computer at another site.

Once you login using Telnet, you can perform all the activities on your

remotely connected machine. The following is an example of Telnet

session:

C:>telnet amrood.com

Trying...

Connected to amrood.com.

Network Communication Utilities
The finger Utility

The finger command displays information about users on a given host.
The host can be either local or remote.

Finger may be disabled on other systems for security reasons.
Check all the logged-in users on the local machine:

$ finger

Login Name Tty Idle Login Time Office

amrood pts/0 Jun 25 08:03 (62.61.164.115)

Processes
A process can be simply defined as an instance of a running program. It should
be understood that a program is part of the file system that resides on a non-
volatile media (such as disk), and a process is an entity that is being executed
(with at least some portion, i.e. segment/page) in RAM. One may say that the
file system has 'places' and that processes have 'life’.”

Since we know that Unix is a multi-user, multi-tasking operating system, we
know that multiple processes can be running on a Unix system at the same
time. Not only can multiple processes be run at the same time, but on a typical
multi-user Unix system, hundreds of processes are running at any given time.

Processes (cont.)
Each time a program is run, a process is created (typically) with the same name as the
program itself. So, if the gimp application program is run, a process with the name of gimp is
created. Most systems have only one gimp program, but if five users run the gimp program,
there will be five processes created named gimp, one for each of the five users. If the
processes have the same name, why doesn't the system get the processes confused, you
ask?

Processes have the concept of a lifetime associated with them. Processes come
to life, or are said to be born as a program is loaded and begins execution.
Processes remain alive while the program continues execution (processes,
however can have different states of life). Processes cease to exist and are said
to die as the running program terminates (either normally or abnormally).

Processes (cont.)
All processes (except the very first one) have a parent which created them.
Similarly, when a process is created, it is created as a child process, with the
process responsible for its creation being its parent. When a process creates a
child process, it is said to have spawned the child. Every process on a Unix
system must have a parent (again, except the very first one), since "orphaned"
processes are not (normally) allowed. Also, all processes on a Unix system can
be linked to the one initial process. As you will see, processes have a similar
hierarchical structure to that of the file system.

Each process will have many attributes associated with it. A processes
attributes are stored in a structure memory which is called a Process Control
Block, or PCB. Each individual process will have a PCB associated with it.

Processes (cont.)
Attributes relevant processes:

• each process will have a unique numeric identifier associated with it,
referred to as its process identification number, or PID

• each process also has a reference to the PID of its parent, i.e. the parent
process id, or PPID

• each process will have priorities associated with it, i.e. the priority of
order of execution

• processes have ownership attributes associated with them, both from the
user level and from the group level

• processes will have a state attributed associated with them, typically
assigned and updated by the kernel

Processes (cont.)
Attributes relevant processes:

• each process will have a unique numeric identifier associated with it,
referred to as its process identification number, or PID

• each process also has a reference to the PID of its parent, i.e. the parent
process id, or PPID

• each process will have priorities associated with it, i.e. the priority of
order of execution

• processes have ownership attributes associated with them, both from the
user level and from the group level

• processes will have a state attributed associated with them, typically
assigned and updated by the kernel

Starting a UNIX terminal
• Every general-purpose computer consists of:

1. Hardware, which consists of memory, CPU, ALU, and
I/O devices, peripheral device, and storage device.

2. System Programs, which consists of compilers, loaders,
editors, OS, etc.

3. Application Programs, which consists of business
programs, database programs.

Then we have the User(s) who interacts with the computer.

The Directory Structure
If you’re coming from Windows, the Linux file system structure can seem

particularly alien. The C:\ drive and drive letters are gone, replaced by a

”/” and cryptic-sounding directories, most of which have three letter

names.

The Filesystem Hierarchy Standard (FHS) defines the structure of file

systems on Linux and other UNIX-like operating systems.

/ – The Root Directory
Everything on your Linux system is located under the / directory, known

as the root directory. You can think of the / directory as being similar to

the C:\ directory on Windows – but this isn’t strictly true, as Linux doesn’t

have drive letters. While another partition would be located at D:\ on

Windows, this other partition would appear in another folder under / on

Linux.

/bin – Essential User Binaries
The /bin directory contains the essential user binaries (programs) that must be
present when the system is mounted in single-user mode. Applications such as
Firefox are stored in /usr/bin, while important system programs and utilities
such as the bash shell are located in /bin. The /usr directory may be stored on
another partition – placing these files in the /bin directory ensures the system
will have these important utilities even if no other file systems are mounted.
The /sbin directory is similar – it contains essential system administration
binaries.

/boot – Static Boot Files
The /boot directory contains the files needed to boot the system – for example,
the GRUB boot loader’s files and your Linux kernels are stored here. The boot
loader’s configuration files aren’t located here, though – they’re in /etc with
the other configuration files.

/cdrom – Mount Point for CD-ROMs
The /cdrom directory isn’t part of the FHS standard, but you’ll still find it on
Ubuntu and other operating systems. It’s a temporary location for CD-ROMs
inserted in the system. However, the standard location for temporary media is
inside the /media directory.

/dev – Device Files
Linux exposes devices as files, and the /dev directory contains a number of
special files that represent devices. These are not actual files as we know them,
but they appear as files – for example, /dev/sda represents the first SATA drive
in the system. If you wanted to partition it, you could start a partition editor
and tell it to edit /dev/sda.

/etc – Configuration Files
The /etc directory contains configuration files, which can generally be edited by
hand in a text editor. Note that the /etc/ directory contains system-wide
configuration files – user-specific configuration files are located in each user’s
home directory.

/home – Home Folders
The /home directory contains a home folder for each user. For example, if your
user name is bob, you have a home folder located at /home/bob. This home
folder contains the user’s data files and user-specific configuration files. Each
user only has write access to their own home folder and must obtain elevated
permissions (become the root user) to modify other files on the system.

/lib – Essential Shared Libraries
The /lib directory contains libraries needed by the essential binaries in the /bin
and /sbin folder. Libraries needed by the binaries in the /usr/bin folder are
located in /usr/lib.

Other folders
/lost+found – Recovered Files

(Any corrupted files found will be placed in the lost+found directory.)
/media – Removable Media

(contains subdirectories where removable media devices inserted into the computer are mounted.)
/mnt – Temporary Mount Points

(where system administrators mounted temporary file systems while using them.)
/opt – Optional Packages

(contains subdirectories for optional software packages.)
/proc – Kernel & Process Files

(contains special files that represent system and process information.)

/run – Application State Files
(store transient files they require like sockets and process IDs.)

Other folders
/sbin – System Administration Binaries

(contains essential binaries that are generally intended to be run by the root user for system administration.)
/selinux – SELinux Virtual File System

(contains special files used by SELinux on Fedora and RedHat Linux distributions.)
/srv – Service Data

(contains “data for services provided by the system.”)
/tmp – Temporary Files

(contains files that are generally deleted whenever the system is restarted and may be deleted by other utilities.)
/usr – User Binaries & Read-Only Data

(where system administrators mounted temporary file systems while using them.)
/var – Variable Data Files

(must be read-only in normal operation. Log files and everything else that would normally be written to /usr

during normal operation are written to the /var directory. .)

